资源类型

期刊论文 55

年份

2024 5

2023 10

2022 5

2021 6

2020 1

2019 4

2018 3

2017 2

2016 1

2015 6

2014 2

2013 2

2012 1

2010 1

2009 2

2007 2

2005 1

2001 1

展开 ︾

关键词

电化学储能 2

NASICON 1

ZEBRA 电池 1

下一代 1

亲钠性铋基材料 1

动态清洗 1

商业化 1

固态电解质 1

固态钠电池 1

处理技术 1

大鼠脑神经膜 1

微移植 1

拟除虫菊酯 1

无枝晶负极 1

样件 1

次磷酸钠 1

毒效动力学 1

比容 1

氟化石墨 1

展开 ︾

检索范围:

排序: 展示方式:

Preliminary results of gentamycin combined with sodium bicarbonate for prevention of irinotecan-induced

Qi MEI MM, Zhe CAO MM, Hua XIONG MD, Yuan CHEN MD,

《医学前沿(英文)》 2009年 第3卷 第4期   页码 470-474 doi: 10.1007/s11684-009-0077-7

摘要: The aim of this paper was to observe the clinical effect of gentamycin combined with sodium bicarbonate for the prevention of irinotecan-induced diarrhea. A total of 98 patients with stage IV cancers were recruited and divided into a prevention group (52 patients) and a control group (46 patients). All patients received the chemotherapy including irinotecan. The prevention group received gentamycin and sodium bicarbonate before the use of irinotecan for 4 days; the control group did not receive any prevention. The use of gentamycin and sodium bicarbonate resulted in significantly higher stool pH ( < 0.001), while the incidence of diarrhea by irinotecan was reduced (prevention group 13.70% control group 34.83%; < 0.001). Gentamycin combined with sodium bicarbonate appears to be useful in preventing the diarrhea induced by irinotecan and reducing the dosage of loperamide and fluid replacement.

关键词: irinotecan     diarrhea     gentamycin     sodium bicarbonate     prevention    

Effect of sodium bicarbonate solution on methyltrimethoxysilane-derived silica aerogels dried at ambient

Yujing Liu, Xiao Han, Balati Kuerbanjiang, Vlado K. Lazarov, Lidija Šiller

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 954-959 doi: 10.1007/s11705-020-2028-4

摘要: Here we present an economical ambient pressure drying method of preparing monolithic silica aerogels from methyltrimethoxysilane precursor while using sodium bicarbonate solution as the exchanging solvent. We prepared silica aerogels with a density and a specific surface area of 0.053 g∙cm and 423 m ∙g , respectively. The average pore diameter of silica aerogels is 23 nm as the pore specific volume is 1.11 cm ∙g . Further, the contact angle between water droplet and the surface of silica aerogels in specific condition can be as high as 166°, which indicates a super-hydrophobic surface of aerogels.

关键词: silica aerogel     methyltrimethoxysilane     solvent exchange     sodium bicarbonate     trimethylchlorosilane     ambient pressure drying    

Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell

Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 624-630 doi: 10.1007/s11783-013-0584-2

摘要: A biocathode with microbial catalyst in place of a noble metal was successfully developed for hydrogen evolution in a microbial electrolysis cell (MEC). The strategy for fast biocathode cultivation was demonstrated. An exoelectrogenic reaction was initially extended with an H -full atmosphere to enrich H -utilizing bacteria in a MEC bioanode. This bioanode was then inversely polarized with an applied voltage in a half-cell to enrich the hydrogen-evolving biocathode. The electrocatalytic hydrogen evolution reaction (HER) kinetics of the biocathode MEC could be enhanced by increasing the bicarbonate buffer concentration from 0.05 mol·L to 0.5 mol·L and/or by decreasing the cathode potential from -0.9 V to -1.3 V vs. a saturated calomel electrode (SCE). Within the tested potential region in this study, the HER rate of the biocathode MEC was primarily influenced by the microbial catalytic capability. In addition, increasing bicarbonate concentration enhances the electric migration rate of proton carriers. As a consequence, more mass H can be released to accelerate the biocathode-catalyzed HER rate. A hydrogen production rate of 8.44 m ·m ·d with a current density of 951.6 A·m was obtained using the biocathode MEC under a cathode potential of -1.3 V vs. SCE and 0.4 mol·L bicarbonate. This study provided information on the optimization of hydrogen production in biocathode MEC and expanded the practical applications thereof.

关键词: microbial electrolysis cell (MEC)     biocathode     hydrogen production     bicarbonate     cathode potential    

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

《能源前沿(英文)》 2023年 第17卷 第6期   页码 775-781 doi: 10.1007/s11708-023-0902-8

摘要: Aqueous zinc-ion batteries (ZIBs) have great prospects for widespread application in massive scale energy storage. By virtue of the multivalent state, open frame structure and high theoretical specific capacity, vanadium (V)-based compounds are a kind of the most developmental potential cathode materials for ZIBs. However, the slow kinetics caused by low conductivity and the capacity degradation caused by material dissolution still need to be addressed for large-scale applications. Therefore, sodium vanadate Na2V6O16·3H2O (NVO) was chosen as a model material, and was modified with alumina coating through simple mixing and stirring methods. After Al2O3 coating modification, the rate capability and long-cycle stability of Zn//NVO@Al2O3 battery have been significantly improved. The discharge specific capacity of NVO@Al2O3 reach up to 228 mAh/g (at 4 A/g), with a capacity reservation rate of approximately 68% after 1000 cycles, and the Coulombic efficiency (CE) is close to 100%. As a comparison, the capacity reservation rate of Zn//NVO battery is only 27.7%. Its superior electrochemical performance is mainly attributed to the Al2O3 coating layer, which can increase zinc-ion conductivity of the material surface, and to some extent inhibit the dissolution of NVO, making the structure stable and improving the cyclic stability of the material. This paper offers new prospects for the development of cathode coating materials for ZIBs.

关键词: cathodes     aqueous zinc-ion batteries     sodium vanadate     alumina     coating    

Preliminary design of an SCO conversion system applied to the sodium cooled fast reactor

《能源前沿(英文)》 2021年 第15卷 第4期   页码 832-841 doi: 10.1007/s11708-021-0777-5

摘要: The supercritical carbon dioxide (SCO2) Brayton cycle has become an ideal power conversion system for sodium-cooled fast reactors (SFR) due to its high efficiency, compactness, and avoidance of sodium-water reaction. In this paper, the 1200 MWe large pool SFR (CFR1200) is used as the heat source of the system, and the sodium circuit temperature and the heat load are the operating boundaries of the cycle system. The performance of different SCO2 Brayton cycle systems and changes in key equipment performance are compared. The study indicates that the inter-stage cooling and recompression cycle has the best match with the heat source characte-ristics of the SFR, and the cycle efficiency is the highest (40.7%). Then, based on the developed system transient analysis program (FR-Sdaso), a pool-type SFR power plant system analysis model based on the inter-stage cooling and recompression cycle is established. In addition, the matching between the inter-stage cooling recompression cycle and the SFR during the load cycle of the power plant is studied. The analysis shows that when the nuclear island adopts the flow-advanced operation strategy and the carbon dioxide flowrate in the SCO2 power conversion system is adjusted with the goal of maintaining the sodium-carbon dioxide heat exchanger sodium side outlet temperature unchanged, the inter-stage cooling recompression cycle can match the operation of the SFR very well.

关键词: sodium-cooled fast reactor (SFR)     supercritical carbon dioxide (SCO2)     brayton cycle     load cycle    

Construction of sustainable, colored and multifunctional protein silk fabric using biomass riboflavin sodium

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1131-1139 doi: 10.1007/s11705-023-2321-0

摘要: Riboflavin sodium phosphate has been confirmed as a promising biomass product derived from natural plants. In this paper, a novel method of dyeing and multifunctional modification of silk fabric by impregnation with riboflavin sodium phosphate was proposed, such that protein silk fabric can be endowed with bright yellow color and multi-functionality. The results of this paper confirmed that the pH and concentration of riboflavin sodium phosphate solution are critical factors for dyeing and multifunctional modification. Attractively, the photochromic performance was one of the most distinctive features of the modified silk fabric, and the dyed silk fabric turned into fluorescent green from original yellow under 365 nm ultraviolet lamp. Furthermore, the modified silk fabric exhibited good antibacterial properties with a high inhibition rate of 92% for Escherichia coli. Besides, the flame retardancy of silk fabric was significantly improved after modification. The damaged length of modified silk fabric with 40% owf riboflavin sodium phosphate was lower than 10.4 cm and passed the B1 classification. As revealed by the result of this paper, riboflavin sodium phosphate is sufficiently effective in serving as an eco-friendly multifunctional agent for strengthening the add-value of silk textiles.

关键词: biomass     riboflavin sodium phosphate     silk protein     multifunctional modification     flame retardant    

Advances in doping strategies for sodium transition metal oxides cathodes: A review

《能源前沿(英文)》 2024年 第18卷 第2期   页码 141-159 doi: 10.1007/s11708-024-0918-8

摘要: The electrochemistry of cathode materials for sodium-ion batteries differs significantly from lithium-ion batteries and offers distinct advantages. Overall, the progress of commercializing sodium-ion batteries is currently impeded by the inherent inefficiencies exhibited by these cathode materials, which include insufficient conductivity, slow kinetics, and substantial volume changes throughout the process of intercalation and deintercalation cycles. Consequently, numerous methodologies have been utilized to tackle these challenges, encompassing structural modulation, surface modification, and elemental doping. This paper aims to highlight fundamental principles and strategies for the development of sodium transition metal oxide cathodes. Specifically, it emphasizes the role of various elemental doping techniques in initiating anionic redox reactions, improving cathode stability, and enhancing the operational voltage of these cathodes, aiming to provide readers with novel perspectives on the design of sodium metal oxide cathodes through the doping approach, as well as address the current obstacles that can be overcome/alleviated through these dopant strategies.

关键词: sodium-ion batteries     transition metal cathode     doping strategy    

A fibrous hydroelectric generator derived from eco-friendly sodium alginate for low-grade energy harvesting

《能源前沿(英文)》 2024年 第18卷 第4期   页码 474-482 doi: 10.1007/s11708-024-0930-z

摘要: With the development of renewable energy technologies, the recovery and utilization of low-grade energy based on hydroelectric effect have drawn much attention owing to its environmental friendliness. Herein, a novel hydroelectric generator utilizing sodium alginate-graphene oxide (SA-GO) fibers is proposed, which is eco-friendly and low-cost. These fibers with a length of 5 cm and a diameter of 0.15 mm can generate an open circuit voltage (Voc) of approximately 0.25 V and a short circuit current (Isc) of 4 μA. By connecting SA-GO fibers in either series or parallel, this combination can power some electronic devices. Furthermore, these fibers enable the recovery of low-grade energy from the atmosphere or around the human body. Both experimental and theoretical analysis confirm that the directional flow of protons driven by water molecules is the main mechanism for power generation of SA-GO fibers. This study not only presents a simple energy transformation method that is expected to be applied to our daily life, but also provides a novel idea for the design of humidity electricity-generation devices.

关键词: fibrous hydroelectric generator     sodium alginate (SA)     graphene oxide (GO)     power generation    

Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries

《化学科学与工程前沿(英文)》 2024年 第18卷 第7期   页码 80-80 doi: 10.1007/s11705-024-2435-z

摘要: Sodium-ion batteries (SIBs), which serve as alternatives or supplements to lithium-ion batteries, have been developed rapidly in recent years. Designing advanced high-performance layered NaxTMO2 cathode materials is beneficial for accelerating the commercialization of SIBs. Herein, the recent research progress on scalable synthesis methods, challenges on the path to commercialization and practical material design strategies for layered NaxTMO2 cathode materials is summarized. Co-precipitation method and solid-phase method are commonly used to synthesize NaxTMO2 on mass production and show their own advantages and disadvantages in terms of manufacturing cost, operative difficulty, sample quality and so on. To overcome drawbacks of layered NaxTMO2 cathode materials and meet the requirements for practical application, a detailed and deep understanding of development trends of layered NaxTMO2 cathode materials is also provided, including high specific energy materials, high-entropy oxides, single crystal materials, wide operation temperature materials and high air stability materials. This work can provide useful guidance in developing practical layered NaxTMO2 cathode materials for commercial SIBs.

关键词: sodium-ion batteries     layered oxide     industrialization     development prospect    

Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium

《化学科学与工程前沿(英文)》 2024年 第18卷 第7期   页码 73-73 doi: 10.1007/s11705-024-2430-4

摘要: Sodium-ion batteries (SIBs) have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource. Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs. In this work, a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon (HC) anode for SIBs. Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials. The optimized HC exhibits a remarkable capacity of over 430 mAh·g–1 after undergoing full activation through 500 cycles at a density of current of 0.1 A·g–1. Furthermore, it demonstrates an initial discharge capacity of 276 mAh·g–1 at a density of current of 0.5 A·g–1. Meanwhile, the optimized HC shows a good capacity retention (170 mAh·g–1 after 750 cycles) and a remarkable rate ability (166 mAh·g–1 at 2 A·g–1). The enhanced capacity is attributed to the suitable degree of graphitization and surface area, which improve the sodium ion transport and storage.

关键词: petroleum pitch     hard carbon     sodium-ion batteries     high rate     recyclable template    

Toxic effect of sodium perfluorononyloxy-benzenesulfonate on in aerobic denitrification, cell structure

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-021-1391-9

摘要:

• OBS inhibited the growth of P. stutzeri and destroyed its structure.

关键词: Sodium perfluorononyloxy-benzenesulfonate     Aerobic denitrification     Pseudomonas stutzeri     Ecotoxicity     ROS     Persist organic pollutants     Toxicity     Denitrification     Microbiology    

Effect of sodium ions in synthesis of titanium silicalite-1 on its catalytic performance for cyclohexanone

Pengxu YAO,Yaquan WANG,Teng ZHANG,Shuhai WANG,Xiaoxue WU

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 149-155 doi: 10.1007/s11705-014-1409-y

摘要: Titanium silicalite-1 (TS-1) has been hydrothermally synthesized with tetrapropylammonium hydroxide (TPAOH) as the template in the presence of various amounts of Na , characterized by inductively coupled plasma, X-ray diffraction, scanning electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and ultro-violet-visible spectroscopy and studied in cyclohexanone ammoximation. The characterization results show that with the increase of Na concentration in the synthesis, both the crystal sizes of TS-1and extra framework Ti increase but framework Ti decreases. The addition of Na below 3 mol-% of TPAOH in the synthesis does not influence the catalytic properties with above 98% conversion of cyclohexanone and 99.5% selectivity to cyclohexanone oxime. However, at the concentrations of Na ≥3 mol-% of TPAOH in the synthesis, the catalysts are deactivated faster with the increase of Na addition, which can be attributed to more high molecular weight byproducts deposited in the large TS-1 particles and the loss of the frame-work titanium. The results of this work are of great importance for the industry.

关键词: extra framework Ti     cyclohexanone ammoximation     titanium silicalite-1     sodium ion     crystal size    

Industrial waste utilization method: producing poly-ferric sulfate (PFS) from sodium-jarosite residue

Zhongguo LI,Wenyi YUAN

《环境科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 731-737 doi: 10.1007/s11783-014-0687-4

摘要: Sodium-jarosite is a type of industrial waste that results from hydrometallurgy and inorganic chemical production. The iron content of jarosite residue may be utilized to produce theoretically the ferrous materials. The difficulty in production of high quality poly-ferric sulfate (PFS) is how to remove impurities contained in jarosite residue. This paper proposes a novel method for disposing sodium-jarosite which can be used to synthesize PFS, a very important reagent for treating waste water. The method consists of a two-step leaching experimental procedures. The first step, pre-leaching process, is to remove impurity metals by strictly controlling the leaching conditions. The acid concentration of acidic water was adjusted according to the content of impurity metals in sodium-jarosite and the leaching temperature was controlled at 25°C. The second step is to decompose sodium-jarosite to provide enough ferric ions for synthesizing PFS, the concentrated sulfuric acid consumption was 0.8 mL·g sodium-jarosite and the leaching temperature was above 60°C. In the experiment, decomposing iron from sulfate sodium-jarosite can take the place of ferric martials for synthesizing PFS. Results show that the PFS synthesized from sodium-jarosite had a high poly-iron complex Fe (SO ) (OH) ·20H O. Further, the PFS product’s specifications satisfied the national standard of China.

关键词: sodium-jarosite residue     utilization     poly-ferric sulfate (PFS)    

Removal of SO

Xiaolei LI, Chunying ZHU, Youguang MA

《化学科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 185-191 doi: 10.1007/s11705-013-1326-5

摘要: In this work, the removal of SO from gas mixture with air and SO by ammonium bicarbonate aqueous solution as absorbent was investigated experimentally in a bubble column reactor. The effects of the concentration of ammonium bicarbonate, the SO inlet concentration of gas phase and the gas flow rate on the removal rate of SO were studied. The results showed that the higher the SO inlet concentration and the gas flow rate, the shorter the lasting time of SO completely removed in gas outlet, and then the faster the decrease in the removal rate of SO . The lasting time of SO completely removed in gas outlet increased with increasing ammonium bicarbonate concentration. During the process of SO absorption, there was a critical pH of solution. When the solution pH was less than the critical pH, it would sharply fall, resulting in a rapid decrease of the SO removal rate. A theoretical model for predicting the SO removal rate has been developed by taking the chemical enhancement and the sulfite concentration in the liquid phase into account simultaneously.

关键词: SO2 removal     bubble column reactor     removal rate     ammonium bicarbonate     absorbent    

Nucleation and growth mechanism of cefodizime sodium at different solvent compositions

Xinwei ZHANG, Shudong ZHANG, Xiaodan SUN, Zequn YIN, Quanjie LIU, Xiwen ZHANG, Qiuxiang YIN

《化学科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 490-495 doi: 10.1007/s11705-013-1350-5

摘要: The induction time of cefodizime sodium was measured in ethanol-water at different solvent compositions by the laser technology measurement. The results indicate that the solvent composition played an important role in the supersaturation and the nucleation process of cefodizime sodium solution. According to the modified classical nucleation theory, the nucleation and growth mechanism were identified. The correlation results show that heterogeneous nucleation dominated the nucleation process at lower supersaturation, where homogeneous nucleation is the most important mechanism at higher supersaturation. Based on the correlated results, the 2D mediated growth mechanism had the highest correlation coefficients ( ), so this mechanism was selected as the proper growth mechanism for cefodizime sodium.

关键词: cefodizime sodium     induction time     primary nucleation     growth mechanism    

标题 作者 时间 类型 操作

Preliminary results of gentamycin combined with sodium bicarbonate for prevention of irinotecan-induced

Qi MEI MM, Zhe CAO MM, Hua XIONG MD, Yuan CHEN MD,

期刊论文

Effect of sodium bicarbonate solution on methyltrimethoxysilane-derived silica aerogels dried at ambient

Yujing Liu, Xiao Han, Balati Kuerbanjiang, Vlado K. Lazarov, Lidija Šiller

期刊论文

Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell

Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG

期刊论文

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

期刊论文

Preliminary design of an SCO conversion system applied to the sodium cooled fast reactor

期刊论文

Construction of sustainable, colored and multifunctional protein silk fabric using biomass riboflavin sodium

期刊论文

Advances in doping strategies for sodium transition metal oxides cathodes: A review

期刊论文

A fibrous hydroelectric generator derived from eco-friendly sodium alginate for low-grade energy harvesting

期刊论文

Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries

期刊论文

Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium

期刊论文

Toxic effect of sodium perfluorononyloxy-benzenesulfonate on in aerobic denitrification, cell structure

期刊论文

Effect of sodium ions in synthesis of titanium silicalite-1 on its catalytic performance for cyclohexanone

Pengxu YAO,Yaquan WANG,Teng ZHANG,Shuhai WANG,Xiaoxue WU

期刊论文

Industrial waste utilization method: producing poly-ferric sulfate (PFS) from sodium-jarosite residue

Zhongguo LI,Wenyi YUAN

期刊论文

Removal of SO

Xiaolei LI, Chunying ZHU, Youguang MA

期刊论文

Nucleation and growth mechanism of cefodizime sodium at different solvent compositions

Xinwei ZHANG, Shudong ZHANG, Xiaodan SUN, Zequn YIN, Quanjie LIU, Xiwen ZHANG, Qiuxiang YIN

期刊论文